Asynchronous responses of soil microbial community and understory plant community to simulated nitrogen deposition in a subtropical forest
نویسندگان
چکیده
Atmospheric nitrogen (N) deposition greatly affects ecosystem processes and properties. However, few studies have simultaneously examined the responses of both the above- and belowground communities to N deposition. Here, we investigated the effects of 8 years of simulated N deposition on soil microbial communities and plant diversity in a subtropical forest. The quantities of experimental N added (g of N m(-2) year(-1)) and treatment codes were 0 (N0, control), 6 (N1), 12 (N2), and 24 (N3). Phospholipid fatty acids (PLFAs) analysis was used to characterize the soil microbial community while plant diversity and coverage were determined in the permanent field plots. Microbial abundance was reduced by the N3 treatment, and plant species richness and coverage were reduced by both N2 and N3 treatments. Declines in plant species richness were associated with decreased abundance of arbuscular mycorrhizal fungi, increased bacterial stress index, and reduced soil pH. The plasticity of soil microbial community would be more related to the different responses among treatments when compared with plant community. These results indicate that long-term N deposition has greater effects on the understory plant community than on the soil microbial community and different conservation strategies should be considered.
منابع مشابه
Understory herb layer exerts strong controls on soil microbial communities in subtropical plantations
The patterns and drivers of soil microbial communities in forest plantations remain inadequate although they have been extensively studied in natural forest and grassland ecosystems. In this study, using data from 12 subtropical plantation sites, we found that the overstory tree biomass and tree cover increased with increasing plantation age. However, there was a decline in the aboveground biom...
متن کاملVariations of Soil Microbial Community Structures Beneath Broadleaved Forest Trees in Temperate and Subtropical Climate Zones
Global warming has shifted climate zones poleward or upward. However, understanding the responses and mechanism of microbial community structure and functions relevant to natural climate zone succession is challenged by the high complexity of microbial communities. Here, we examined soil microbial community in three broadleaved forests located in the Wulu Mountain (WLM, temperate climate), Funi...
متن کاملCaspian Coastal Forests: Arbuscular Mycorrhizal Fungi and Understory Vegetation
Moist and temperate Caspian forests are associated with a diversity of soil types and topography. Although, natural history and ecological attributes of the Caspian vegetation is well-documented, little is known about mycorrhizae of the Caspian (Hyrcanian) flora. Samples of herbaceous plant species were collected from 4 pre-determined altitudes (-13 upto about 1500m above sea level, appro...
متن کاملInvariant community structure of soil bacteria in subtropical coniferous and broadleaved forests.
Soil bacteria may be influenced by vegetation and play important roles in global carbon efflux and nutrient cycling under global changes. Coniferous and broadleaved forests are two phyletically distinct vegetation types. Soil microbial communities in these forests have been extensively investigated but few studies have presented comparable data regarding the characteristics of bacterial communi...
متن کاملNitrogen Addition Altered the Effect of Belowground C Allocation on Soil Respiration in a Subtropical Forest
The availabilities of carbon (C) and nitrogen (N) in soil play an important role in soil carbon dioxide (CO2) emission. However, the variation in the soil respiration (Rs) and response of microbial community to the combined changes in belowground C and N inputs in forest ecosystems are not yet fully understood. Stem girdling and N addition were performed in this study to evaluate the effects of...
متن کامل